From 1 - 10 / 166
  • De BGT, Basisregistratie Grootschalige Topografie, wordt de gedetailleerde grootschalige basiskaart (digitale kaart) van heel Nederland, beschikbaar gesteld als Linked Data. Hierin zijn op een eenduidige manier de ligging van alle fysieke objecten zoals gebouwen, wegen, water, spoorlijnen en (landbouw)terreinen geregistreerd.

  • De kaart geeft bijdrage weer aan de waterzuiverende werking door filtratie door mosselen in de Waddenzee uitgedrukt in liter per vierkante meter bodemoppervlak per dag. Bodemorganismen zoals schelpdieren zijn afhankelijk van water voor hun voedselvoorziening maar hebben tegelijkertijd ook een zuiverende werking op het water doordat zij zwevend materiaal aan het water onttrekken. Hierdoor beïnvloeden ze de waterkwaliteit in termen van zwevend stof gehalte en doorzicht. De water zuiverende werking door schelpdieren is niet uniform verdeeld maar is mede afhankelijk van de verspreiding van de schelpdieren. Daarnaast wordt de zuiverende werking van schelpdieren in getijdesystemen als de Waddenzee tevens beïnvloed door de werking van het getij die de overspoelingsduur bepaald. De kaart geeft een indicatie van de zuiverende werking door schelpdieren waarbij als indicator de hoeveelheid gefilterd water door mosselen is weergegeven per tijdseenheid per oppervlak.

  • TOP500NL is een digitaal objectgericht topografisch bestand gemaakt door middel van een conversie en generalisatie uit EuroRegionalMap (ERM). Het Kadaster heeft gekozen voor een detailniveau dat uitstekend geschikt is voor kleinschalige toepassingen.

  • De kaart is een weergave van de verscheidenheid aan typen vaarwegen en dat niet alle rivieren of meren voor elk type schip bevaarbaar zijn. Nederland is als handelsnatie afhankelijk van het vervoer van goederen. Een belangrijk deel hiervan vindt plaats via rivieren, kanalen en meren. Deze verbinden de Noordzee met de rest van Nederland en het achterliggende Europa. De binnenwateren maken transport mogelijk op een grootschalige en relatieve goedkope manier. Op de binnenwateren zijn vaarroutes aangegeven. Nederland heeft 6200 km aan vaarwegen. Rijkswaterstaat houdt toezicht en begeleidt het verkeer op de binnenwateren. Het transport op de binnenwateren is afhankelijk van het goed functioneren van het systeem, waaronder gebrek of een teveel aan water. In tijden van droogte wordt het vervoer zoveel mogelijk aangepast waarbij men overschakelt op kleinere schepen. Er kunnen ook langere wachttijden ontstaan bij sommige stuwen. Er kunnen conflicten met ander gebruik optreden.

  • De kaartenset ‘irrigatiewater’ bestaat uit een combinatie van de volgende drie kaartlagen: • 5a : Effect van beregeningsonttrekkingen op grondwaterkwel (indicator voor effect van gebruik van deze ecosysteemdienst, op de ecosysteemdiensten ‘water voor terrestrische natuur’ en ‘water voor aquatische natuur’). • 5b: Locatie beregeningsonttrekkingen uit het grondwater (indicator voor gebruik/flow) • 5c (deze kaart): Vermeden reductie van gewasverdamping als gevolg van beregening (indicator voor effect van gebruik van deze ecosysteemdienst op landbouwproductie). Kaart 5a en 5b zijn bedoeld om gecombineerd te bekijken. De puntlocaties (5b) geven aan waar de onttrekkingen plaatsvinden (schatting op basis van het NHI) en kaart 5a toont de effecten op grondwaterkwel. Bij uitzoomen zullen alleen de onttrekkingslocaties zichtbaar zijn. Na inzoomen op een specifiek gebied, wordt het onderliggende effect van de onttrekkingen zichtbaar. Kaart 5c en 5b (deze kaart) zijn bedoeld om gecombineerd te bekijken. De puntlocaties (5b) geven aan waar de onttrekkingen plaatsvinden (schatting op basis van het NHI) en kaart 5c toont de vermeden verdampingsreductie. Bij uitzoomen zullen alleen de onttrekkingslocaties zichtbaar zijn. Na inzoomen op een specifiek gebied, wordt het onderliggende effect van de irrigatie zichtbaar. Kaart 5a toont het effect van grondwateronttrekkingen ten behoeve van beregening op grondwaterkwel in Zuid- en Oost-Nederland. Het effect op grondwaterkwel is gekozen als indicator voor het effect van gebruik van deze ecosysteemdienst op twee andere ecosysteemdiensten: ‘water voor terrestrische natuur’ en ‘water voor aquatische natuur’. Dit effect is vooral van belang in Zuid- en Oost-Nederland, waar de meeste beregening uit grondwater plaatsvindt en kwel naar beekdalen een belangrijke rol speelt. De kaart met grondwaterkwel toont zowel de afname van kwel (in mm per dag) als gebieden waar kwel geheel verdwijnt door de beregeningsonttrekkingen en omslaat naar infiltratie. Kaart 5b toont de ligging van beregeningsonttrekkingen in Nederland die aan het effect ten grondslag ligt en dient als ondersteuning van de interpretatie van de effectkaarten (5a en 5c). Kaart 5c (deze kaart) toont de vermeden verdampingsreductie als gevolg van beregening. Landbouwgewassen worden beregend met als doel de gewassen altijd van genoeg water te voorzien om optimaal te groeien. Gewassen verdampen in dat geval ook maximaal (ook wel ‘potentiele gewasverdamping’ genoemd), terwijl reductie van verdamping optreedt wanneer gewassen niet voldoende water beschikbaar hebben (‘actuele gewasverdamping’). Kaart 5c is daarmee een goede maat voor de effectiviteit van beregening. Om de getallen in perspectief te zetten: een gewas verdampt in Nederland tijdens het groeiseizoen ongeveer 300 mm per jaar. Belangrijkste boodschap bij de kaart: Beregeningsonttrekkingen vinden plaats in relatieve korte perioden in het jaar (droge zomers, perioden met vochttekort in de wortelzone van gewassen), maar bereiken gezamenlijk een flinke omvang. Deze omvang is ’s zomers vergelijkbaar met die van de grote drinkwateronttrekkingen. De effecten zijn daarom ook niet gering en kunnen grote effecten hebben op andere ecosysteemdiensten, zoals drinkwatervoorziening en water voor terrestrische en aquatische natuur. Als deze ecosysteemdiensten maken namelijk gebruik van dezelfde watervoorraad. Onttrekking van grondwater zorgt, via verlaging van grondwaterstanden en stijghoogte, bijvoorbeeld voor afname van grondwaterkwel en daarmee basisafvoer in beken en verminderde beschikbaarheid van water van goede kwaliteit voor natte natuurgebieden. Uitgebreidere toelichting: Beregeningswater wordt zowel onttrokken uit grondwater als uit oppervlaktewater. Het percentage dat uit grondwater wordt onttrokken varieert tussen ca. 80 en 65% van het irrigatiewater voor respectievelijk droge en natte jaren (Hoogeveen e.a., 2003) Veel provincies verplichten gebruik van oppervlaktewater. Steeds vaker wordt echter grondwater als alternatief genoemd, zeker in droge perioden. In gebieden waar gewassen worden verbouwd die gevoelig zijn voor bruinrot en ringrot, zoals aardappelen, is irrigatie uit oppervlaktewater verboden en is grondwater het enige alternatief. Onttrekking van grondwater en oppervlaktewater ten behoeve van irrigatie gebeurt voornamelijk in perioden met een neerslagtekort. Beregening vindt dan plaats om het vochttekort in de wortelzone aan te vullen, ten behoeve van agrarische productie. In gebieden met fruitteelt wordt soms beregening uit grondwater ook toegepast om vorstschade aan bloesem in het vroege voorjaar te voorkomen. Meerdere ecosysteemdiensten maken gebruik van dezelfde watervoorraad. Voor beregening is het van belang dat voldoende oppervlaktewater of grondwater op beperkte diepte aanwezig is. De capaciteit van deze voorraden neemt af door beregeningsonttrekkingen, waardoor deze ook voor andere ecosysteemdiensten, zoals water voor drinkwater en industrie, water voor waterafhankelijke natuurgebieden en watervoerendheid en waterkwaliteit van beken afneemt (figuur 1). Beregeningsonttrekkingen hebben op zowel het oppervlaktewater- als het grondwatersysteem effect. Directe onttrekking uit het oppervlaktewater verlaagt de, in deze perioden reeds lage, beekafvoer waarvan waternatuur afhankelijk is. Onttrekking van grondwater zorgt, via verlaging van grondwaterstanden en stijghoogte, voor afname van zowel grondwaterkwel als beekafvoer. Vooral in droge perioden is deze kwel in de beek de belangrijkste bron voor beekafvoer en afname van kwel betekent een directe afname van de afvoer van beken. Veel natte natuurgebieden zijn afhankelijk van kwel omdat het zorgt voor (permanent) natte condities (hoge grondwaterstanden) en een bijzondere kwaliteit (bijvoorbeeld kalkrijk). Afname van kwel leidt tot een verslechtering van deze standplaatscondities voor de vaak bijzondere vegetatie in kwelafhankelijke natuurgebieden. Boeren investeren steeds meer in het beregenen van landbouwgrond. Het potentieel te beregenen areaal open landbouwgrond (dus zonder glastuinbouw) is de afgelopen jaren gestegen van 18 procent in 2003 naar 26 procent in 2010. Het deel van de landbouwgrond dat daadwerkelijk beregend werd is zelfs harder gestegen. In de periode 2002-2009 is het beregende areaal verdubbeld (Bron: CBS). Met name in de provincies Noord-Brabant, Limburg, Flevoland en de kop van Noord-Holland wordt een groot areaal beregend. Onderzoek in Noord-Brabant toont aan dat de vraag naar irrigatiewater evenredig toeneemt met het neerslagtekort. In de provincie Noord-Brabant is de ruimtelijke spreiding van het effect van irrigatieonttrekkingen op de grondwaterstijghoogte veel groter dan het effect op de freatische grondwaterstand. Dit komt door de aanwezigheid van weerstandbiedende lagen op geringe diepte (figuur 2). De omvang van de beregeningsonttrekkingen uit het grondwater kan in de zomerperiode een omvang bereiken gelijk aan die van alle drinkwaterwinningen samen (Kuijper e.a., 2012). Deze grote hoeveelheid die in een korte tijd wordt onttrokken, zorgt voor zeer sterke effecten. Figuur 3 toont een meting van het zogenaamde ELS-effect ( Extreem-Lage-Standen). Dit treedt op door beregeningsonttrekkingen in het grondwater en is op veel plaatsen in Noord-Brabant gemeten. Tijdens de beregeningsperiode neemt de kwel en basisafvoer sterk af. Voor veel gebieden verdwijnt de kwel zelfs (Figuur 3) en dit vindt juist plaats tijdens droge periodes waarin ook terrestrische en aquatische natuur water nodig heeft. Na het stoppen van beregening herstelt het watersysteem zich weer gedeeltelijk (zie Figuur 3). In de hoger gelegen infiltratiegebieden treden echter structurele dalingen van de freatische grondwaterstand als gevolg van beregeningsonttrekkingen uit het grondwater. Herkomst: Kaart 5a Effect op grondwaterkwel: Deze kaartlaag (gridfile) is berekend met het Nationaal Hydrologisch Instrumentarium (NHI) versie 3.0.2. Kaart 5b Onttrekingslocaties voor beregening: Deze kaartlaag (punten, shapefile) toont de beregeningslocaties uit grond- danwel oppervlaktewater zoals deze zijn opgenomen in het Nationaal Hydrologisch Instrumentarium (NHI) (De Lange e.a., 2014), versie 3.0.2 Kaart 5c (deze kaart) Vermeden verdampingsreductie als gevolg van beregening: De kaartlaag (gridfile) is berekend met NHI versie 3.0.2 (De Lange e.a., 2014). Het resultaat is tot stand gekomen door naast de referentierun, waarin normaal wordt beregend, het model door te rekenen voor een situatie waarin niet wordt beregend. De kaart toont het verschil in cumulatieve verdampingsreductie tussen beide modeluitkomsten voor het groeiseizoen (april tot oktober) van het droge jaar 2003 (frequentie ongeveer 1 maal per 10 jaar.

  • De kaartenset ‘irrigatiewater’ bestaat uit een combinatie van de volgende drie kaartlagen: • 5a: Effect van beregeningsonttrekkingen op grondwaterkwel (indicator voor effect van gebruik van deze ecosysteemdienst, op de ecosysteemdiensten ‘water voor terrestrische natuur’ en ‘water voor aquatische natuur’). • 5b (deze kaart): Locatie beregeningsonttrekkingen uit het grondwater (indicator voor gebruik/flow) • 5c: Vermeden reductie van gewasverdamping als gevolg van beregening (indicator voor effect van gebruik van deze ecosysteemdienst op landbouwproductie). Kaart 5a en 5b zijn bedoeld om gecombineerd te bekijken. De puntlocaties (5b) geven aan waar de onttrekkingen plaatsvinden (schatting op basis van het NHI) en kaart 5a toont de effecten op grondwaterkwel. Bij uitzoomen zullen alleen de onttrekkingslocaties zichtbaar zijn. Na inzoomen op een specifiek gebied, wordt het onderliggende effect van de onttrekkingen zichtbaar. Kaart 5c en 5b zijn bedoeld om gecombineerd te bekijken. De puntlocaties (5b) geven aan waar de onttrekkingen plaatsvinden (schatting op basis van het NHI) en kaart 5c toont de vermeden verdampingsreductie. Bij uitzoomen zullen alleen de onttrekkingslocaties zichtbaar zijn. Na inzoomen op een specifiek gebied, wordt het onderliggende effect van de irrigatie zichtbaar. Kaart 5a toont het effect van grondwateronttrekkingen ten behoeve van beregening op grondwaterkwel in Zuid- en Oost-Nederland. Het effect op grondwaterkwel is gekozen als indicator voor het effect van gebruik van deze ecosysteemdienst op twee andere ecosysteemdiensten: ‘water voor terrestrische natuur’ en ‘water voor aquatische natuur’. Dit effect is vooral van belang in Zuid- en Oost-Nederland, waar de meeste beregening uit grondwater plaatsvindt en kwel naar beekdalen een belangrijke rol speelt. De kaart met grondwaterkwel toont zowel de afname van kwel (in mm per dag) als gebieden waar kwel geheel verdwijnt door de beregeningsonttrekkingen en omslaat naar infiltratie. Kaart 5b (deze kaart) toont de ligging van beregeningsonttrekkingen in Nederland die aan het effect ten grondslag ligt en dient als ondersteuning van de interpretatie van de effectkaarten (5a en 5c). Kaart 5c toont de vermeden verdampingsreductie als gevolg van beregening. Landbouwgewassen worden beregend met als doel de gewassen altijd van genoeg water te voorzien om optimaal te groeien. Gewassen verdampen in dat geval ook maximaal (ook wel ‘potentiele gewasverdamping’ genoemd), terwijl reductie van verdamping optreedt wanneer gewassen niet voldoende water beschikbaar hebben (‘actuele gewasverdamping’). Kaart 5c is daarmee een goede maat voor de effectiviteit van beregening. Om de getallen in perspectief te zetten: een gewas verdampt in Nederland tijdens het groeiseizoen ongeveer 300 mm per jaar. Belangrijkste boodschap bij de kaart: Beregeningsonttrekkingen vinden plaats in relatieve korte perioden in het jaar (droge zomers, perioden met vochttekort in de wortelzone van gewassen), maar bereiken gezamenlijk een flinke omvang. Deze omvang is ’s zomers vergelijkbaar met die van de grote drinkwateronttrekkingen. De effecten zijn daarom ook niet gering en kunnen grote effecten hebben op andere ecosysteemdiensten, zoals drinkwatervoorziening en water voor terrestrische en aquatische natuur. Als deze ecosysteemdiensten maken namelijk gebruik van dezelfde watervoorraad. Onttrekking van grondwater zorgt, via verlaging van grondwaterstanden en stijghoogte, bijvoorbeeld voor afname van grondwaterkwel en daarmee basisafvoer in beken en verminderde beschikbaarheid van water van goede kwaliteit voor natte natuurgebieden. Uitgebreidere toelichting Beregeningswater wordt zowel onttrokken uit grondwater als uit oppervlaktewater. Het percentage dat uit grondwater wordt onttrokken varieert tussen ca. 80 en 65% van het irrigatiewater voor respectievelijk droge en natte jaren (Hoogeveen e.a., 2003) Veel provincies verplichten gebruik van oppervlaktewater. Steeds vaker wordt echter grondwater als alternatief genoemd, zeker in droge perioden. In gebieden waar gewassen worden verbouwd die gevoelig zijn voor bruinrot en ringrot, zoals aardappelen, is irrigatie uit oppervlaktewater verboden en is grondwater het enige alternatief. Onttrekking van grondwater en oppervlaktewater ten behoeve van irrigatie gebeurt voornamelijk in perioden met een neerslagtekort. Beregening vindt dan plaats om het vochttekort in de wortelzone aan te vullen, ten behoeve van agrarische productie. In gebieden met fruitteelt wordt soms beregening uit grondwater ook toegepast om vorstschade aan bloesem in het vroege voorjaar te voorkomen. Meerdere ecosysteemdiensten maken gebruik van dezelfde watervoorraad. Voor beregening is het van belang dat voldoende oppervlaktewater of grondwater op beperkte diepte aanwezig is. De capaciteit van deze voorraden neemt af door beregeningsonttrekkingen, waardoor deze ook voor andere ecosysteemdiensten, zoals water voor drinkwater en industrie, water voor waterafhankelijke natuurgebieden en watervoerendheid en waterkwaliteit van beken afneemt (figuur 1). Beregeningsonttrekkingen hebben op zowel het oppervlaktewater- als het grondwatersysteem effect. Directe onttrekking uit het oppervlaktewater verlaagt de, in deze perioden reeds lage, beekafvoer waarvan waternatuur afhankelijk is. Onttrekking van grondwater zorgt, via verlaging van grondwaterstanden en stijghoogte, voor afname van zowel grondwaterkwel als beekafvoer. Vooral in droge perioden is deze kwel in de beek de belangrijkste bron voor beekafvoer en afname van kwel betekent een directe afname van de afvoer van beken. Veel natte natuurgebieden zijn afhankelijk van kwel omdat het zorgt voor (permanent) natte condities (hoge grondwaterstanden) en een bijzondere kwaliteit (bijvoorbeeld kalkrijk). Afname van kwel leidt tot een verslechtering van deze standplaatscondities voor de vaak bijzondere vegetatie in kwelafhankelijke natuurgebieden. Boeren investeren steeds meer in het beregenen van landbouwgrond. Het potentieel te beregenen areaal open landbouwgrond (dus zonder glastuinbouw) is de afgelopen jaren gestegen van 18 procent in 2003 naar 26 procent in 2010. Het deel van de landbouwgrond dat daadwerkelijk beregend werd is zelfs harder gestegen. In de periode 2002-2009 is het beregende areaal verdubbeld (Bron: CBS). Met name in de provincies Noord-Brabant, Limburg, Flevoland en de kop van Noord-Holland wordt een groot areaal beregend. Onderzoek in Noord-Brabant toont aan dat de vraag naar irrigatiewater evenredig toeneemt met het neerslagtekort. In de provincie Noord-Brabant is de ruimtelijke spreiding van het effect van irrigatieonttrekkingen op de grondwaterstijghoogte veel groter dan het effect op de freatische grondwaterstand. Dit komt door de aanwezigheid van weerstandbiedende lagen op geringe diepte (figuur 2). De omvang van de beregeningsonttrekkingen uit het grondwater kan in de zomerperiode een omvang bereiken gelijk aan die van alle drinkwaterwinningen samen (Kuijper e.a., 2012). Deze grote hoeveelheid die in een korte tijd wordt onttrokken, zorgt voor zeer sterke effecten. Figuur 3 toont een meting van het zogenaamde ELS-effect ( Extreem-Lage-Standen). Dit treedt op door beregeningsonttrekkingen in het grondwater en is op veel plaatsen in Noord-Brabant gemeten. Tijdens de beregeningsperiode neemt de kwel en basisafvoer sterk af. Voor veel gebieden verdwijnt de kwel zelfs (Figuur 3) en dit vindt juist plaats tijdens droge periodes waarin ook terrestrische en aquatische natuur water nodig heeft. Na het stoppen van beregening herstelt het watersysteem zich weer gedeeltelijk (zie Figuur 3). In de hoger gelegen infiltratiegebieden treden echter structurele dalingen van de freatische grondwaterstand als gevolg van beregeningsonttrekkingen uit het grondwater. Herkomst: Kaart 5a Effect op grondwaterkwel: Deze kaartlaag (gridfile) is berekend met het Nationaal Hydrologisch Instrumentarium (NHI) versie 3.0.2. Kaart 5b (deze kaart) Onttrekingslocaties voor beregening: Deze kaartlaag (punten, shapefile) toont de beregeningslocaties uit grond- danwel oppervlaktewater zoals deze zijn opgenomen in het Nationaal Hydrologisch Instrumentarium (NHI) (De Lange e.a., 2014), versie 3.0.2 Kaart 5c Vermeden verdampingsreductie als gevolg van beregening: De kaartlaag (gridfile) is berekend met NHI versie 3.0.2 (De Lange e.a., 2014). Het resultaat is tot stand gekomen door naast de referentierun, waarin normaal wordt beregend, het model door te rekenen voor een situatie waarin niet wordt beregend. De kaart toont het verschil in cumulatieve verdampingsreductie tussen beide modeluitkomsten voor het groeiseizoen (april tot oktober) van het droge jaar 2003 (frequentie ongeveer 1 maal per 10 jaar.

  • Atlas voor kaarten over het warmte gebruik (industrie, glastuinbouw en huishoudens) en potentieel kaarten voor de productie van duurzame warmte en de aanwezigheid van nog niet benutte restwarmte.

  • De kaart geeft de functie van water weer als zwemwater voor recreatief gebruik. De kwalificatie van zwemwaterlocaties in Nederland wordt beoordeeld op grond van de Europese zwemwaterrichtlijn voor 4 kwaliteitsklassen; uitstekend, goed, aanvaardbaar en slecht. Niet alle zwemwaterlocaties in Nederland voldoen aan de Europese Zwemwaterrichtlijn. De EU Zwemwaterrichtlijn 2006/7/EG stelt bepalingen vast voor: a) de controle en de indeling van de zwemwaterkwaliteit; b) het beheer van de zwemwaterkwaliteit; en c) het verstrekken van informatie over zwemwaterkwaliteit aan het publiek. De richtlijn heeft tot doel het behoud, de bescherming en de verbetering van de milieukwaliteit en de bescherming van de gezondheid van de mens, aanvullend op de Kaderrichtlijn water. Op initiatief van FEE (Foundation for Environmental Education) betrekt overheden, ondernemers en recreanten bij de zorg voor schoon en veilig water. Als kwaliteitskeurmerk wordt “De Blauwe Vlag” gehanteerd voor badstranden, meertjes en jachthavens, die aangeeft dat het zwemwater aan een aantal waterkwaliteits criteria voldoet. Het zwemwater wordt geanalyseerd op aanwezigheid en aantal specifieke bacteriën zoals fecale streptococcen (enterococcen) en Escherichia coli. Beide bacteriën komen voor in de ontlasting van mensen en dieren en zijn een goede aanwijzing voor de zwemwaterkwaliteit, waarvoor normen zijn vastgesteld. In Nederland worden ook concentraties cyanobacterie concentraties gemonitord, echter hiervoor bestaan echter geen normen. De World Health Organization (WHO) heeft richtlijnen opgesteld voor de waterkwaliteit bij blootstelling aan cyanobacteriën en microcystinen. Rijkswaterstaat beheert 220 zwemlocaties. Het beheer van deze locaties voldoet aan de EU zwemwaterrichtlijn. Per zwemlocatie is een zwemwaterprofiel beschikbaar, waarin de belangrijke kenmerken van deze plek staan beschreven. Een kaartje van de zwemzone met daarin aangegeven het controlepunt waar de locatie wordt bemonsterd is in de profielen opgenomen. De zwemzones worden vastgesteld m.b.v. de aanbevelingen uit het rapport “KRW en oppervlaktewater Bescherming van zwemwater en oppervlaktewater voor drinkwaterbereiding onder de Europese Kaderrichtlijn Water”. De zwemwaterkwaliteit wordt tenminste een keer per maand onderzocht. Het controlepunt is de locatie in het zwemwater waar: a) de meeste zwemmers worden verwacht, of b) volgens het zwemwaterprofiel het grootste risico van verontreiniging wordt verwacht. Zwemwaterprofielen worden geactualiseerd volgens de criteria genoemd in de EU-zwemwaterrichtlijn en zijn afhankelijk van de kwaliteitsklasse waarin de locatie valt.

  • Kunstwerken Gemalen (en andere kunstwerken) kunnen voorzien worden van warmtewisselaars waarmee koude gewonnen kan worden uit de waterstroom. Hiermee kan met een kleine investering een zeer hoog koel vermogen worden opgewekt. Deze koude (5 - 9 °C) wordt opgeslagen in het grondwater van de WKO waarmee het in de zomer beschikbaar komt en kan worden ingezet voor koeling voor afnemers van koude in de nabijheid van een kunstwerk. Diepe plassen Het water van “diepe”plassen (>18 meter) kan worden ingezet voor het duurzaam koelen van gebouwen. Het koude water (4 – 8 °C) uit de diepte van een plas blijft geïsoleerd en biedt hiermee een duurzame bron van koeling. Door deze koude in de zomer op te pompen en in te zetten voor het koelen van gebouwen of processen kan een energiebesparing worden gerealiseerd van 90% voor afnemers van koude in de nabijheid van een diepe plas. Beschrijving De dataset beschrijft het economisch winbaar potentieel van thermische energie uit oppervlaktewater ten opzichte van de huidige koudevraag gecorrigeerd voor de bodemopslagcapaciteit voor WKO uitgedrukt in geschiktheidsklassen (matig geschikt, redelijk geschikt, geschikt, zeer geschikt, uitstekend geschikt) van een locatie binnen een straal van 1.000 meter van kunstwerken en diepe plassen.

  • De gemeente is bevoegd gezag voor het nemen van besluiten over behoudenswaardige archeologie in de bodem. Voor het antwoord of archeologisch onderzoek verplicht is kunt u de Archeologische Beleidskaart raadplegen.