Nationaal georegister
  • Contact
  • Help
  • Home
  • Zoeken
  • Kaart
  • Actueel
  • Over NGR
  • Voor ontwikkelaars
Zoeken

Ensemble precipitation forecasts made with Quantile Regression Forests and deterministic Harmonie-Arome inputs

**Data Quality Warning:** Data released prior to 2025-07-10 is unreliable due to a configuration error. Please disregard affected data.



A gridded 51-member ensemble of precipitation forecasts that are created using a tree-based machine learning method, quantile regression forests (QRF), and inputs from the deterministic Harmonie-Arome (HA) Cy43 forecasts. The target data set is rain-gauge-adjusted radar data that is upscaled by taking 3x3 km means and then a rolling maximum is taken in a 9 x 9 km box. Inputs to the machine learning model include HA precipitation, and indices of atmospheric instability. Spatial and temporal dependencies are restored using the minimum divergence Schaake Shuffle (SSh). Hourly forecasts are issued 8 times per day (00, 03, 06, 09, 12, 15, 18 and 21 UTC) for 60-hours into the future.

Simple

Date (Publication)
2025-04-15
Edition

1

Citation identifier
urn:xkdc:ds:nl.knmi::QRF-RT-SSh/v2025/
Purpose

Calibrated and skilful gridded ensemble forecasts of precipitation in the Netherlands

Status
On going
Point of contact
Organisation name Individual name Electronic mail address Role

Koninklijk Nederlands Meteorologisch Instituut (KNMI)

opendata@knmi.nl

Point of contact
Maintenance and update frequency
Continual

DG Discovery Properties Vocabulary 1.0

  • Weather forecast

  • Precipitation

  • Machine learning

  • Quantile regression forests

Use limitation

pre-operational, so no guaranteed delivery yet

Access constraints
Other restrictions
Other constraints

https://creativecommons.org/licenses/by/4.0/deed.nl

Classification
Unclassified
Spatial representation type
Grid
Distance
3000  meters
Language
English
Character set
UTF8
Topic category
  • Climatology, meteorology, atmosphere
N
S
E
W
thumbnail




Begin date
2025-04-15
End date
9999-12-31
Supplemental Information

The Minimum Divergence version of the Schaake Shuffle ([Scheuerer et al., 2017]( https://doi.org/10.1002/2016WR020133)) is used for statistical ensemble member generation. The Quantile Regression Forest algorithm as described by [Taillardat et al., 2016]( https://doi.org/10.1175/MWR-D-15-0260.1)) is used as post-processing method.

Reference system identifier
http://www.opengis.net/def/crs/EPSG/0/4326
Distribution format
Name Version

NetCDF

4

Distributor contact
Organisation name Individual name Electronic mail address Role

Koninklijk Nederlands Meteorologisch Instituut (KNMI)

opendata@knmi.nl

Point of contact

Digital transfer options

OnLine resource
Protocol Linkage Name

landingpage

https://dataplatform.knmi.nl/catalog/datasets/index.html?x-dataset=QRF-RT-SSh&x-dataset-version=v2025

KNMI Data Platform

Hierarchy level
Dataset
Statement

Bi-linear interpolation from lambert to regular lat-lon

Metadata

File identifier
82ba10ab-f2e4-40c0-91b8-f21454618134 XML
Metadata language
English
Character set
UTF8
Hierarchy level
Dataset
Date stamp
2025-12-09T13:03:22.56468Z
Metadata standard name

ISO 19115

Metadata standard version

ISO 19115:2003 NL Kernset 1.3 KNMI 2.1.0

Metadata author
Organisation name Individual name Electronic mail address Role

Koninklijk Nederlands Meteorologisch Instituut (KNMI)

opendata@knmi.nl

Point of contact
Other language
Language Character encoding
Dutch; Flemish
English UTF8
 
 

Overviews

Spatial extent

thumbnail

Keywords



Provided by

logo

Share on social sites





Privacy Cookies Copyright