Nationaal georegister
  • Contact
  • Help
  • Home
  • Zoeken
  • Kaart
  • Actueel
  • Over NGR
  • Voor ontwikkelaars
Zoeken

Ensemble precipitation forecasts made with Quantile Regression Forests and deterministic Harmonie-Arome inputs

**Data Quality Warning:** Data released prior to 2025-07-10 is unreliable due to a configuration error. Please disregard affected data.



A gridded 51-member ensemble of precipitation forecasts that are created using a tree-based machine learning method, quantile regression forests (QRF), and inputs from the deterministic Harmonie-Arome (HA) Cy43 forecasts. The target data set is rain-gauge-adjusted radar data that is upscaled by taking 3x3 km means and then a rolling maximum is taken in a 9 x 9 km box. Inputs to the machine learning model include HA precipitation, and indices of atmospheric instability. Spatial and temporal dependencies are restored using the minimum divergence Schaake Shuffle (SSh). Hourly forecasts are issued 8 times per day (00, 03, 06, 09, 12, 15, 18 and 21 UTC) for 60-hours into the future.

Standaard

Datum (publicatie)
2025-04-15
Versie

1

Identifier
urn:xkdc:ds:nl.knmi::QRF-RT-SSh/v2025/
Doel van vervaardiging

Calibrated and skilful gridded ensemble forecasts of precipitation in the Netherlands

Status
continu geactualiseerd
Contactgegevens voor de data
Organisatie Naam Contactpersoon Email Rol

Koninklijk Nederlands Meteorologisch Instituut (KNMI)

opendata@knmi.nl

contactpunt
Herzieningsfrequentie
continu

DG Discovery Properties Vocabulary 1.0

  • Weather forecast

  • Precipitation

  • Machine learning

  • Quantile regression forests

Gebruiksbeperkingen

pre-operational, so no guaranteed delivery yet

(Juridische) toegangsrestrictie
anders
Overige beperkingen

https://creativecommons.org/licenses/by/4.0/deed.nl

Veiligheidsrestricties
vrij toegankelijk
Ruimtelijk schema
grid
Afstand
3000  meters
Taal
English
Karakterset
utf8
Onderwerp
  • klimatologie, meteorologie atmosfeer
N
S
E
W




Begindatum
2025-04-15
Einddatum
9999-12-31
Aanvullende informatie

The Minimum Divergence version of the Schaake Shuffle ([Scheuerer et al., 2017]( https://doi.org/10.1002/2016WR020133)) is used for statistical ensemble member generation. The Quantile Regression Forest algorithm as described by [Taillardat et al., 2016]( https://doi.org/10.1175/MWR-D-15-0260.1)) is used as post-processing method.

Referentiesysteem identifier
http://www.opengis.net/def/crs/EPSG/0/4326
Distributie formaat
Naam Versie

NetCDF

4

Distributeur contact
Organisatie Naam Contactpersoon Email Rol

Koninklijk Nederlands Meteorologisch Instituut (KNMI)

opendata@knmi.nl

contactpunt

Digitale leverings opties

OnLine bronnen
Protocol URL Naam

landingpage

https://dataplatform.knmi.nl/catalog/datasets/index.html?x-dataset=QRF-RT-SSh&x-dataset-version=v2025

KNMI Data Platform

Niveau kwaliteitsbeschrijving
dataset
Algemene beschrijving herkomst

Bi-linear interpolation from lambert to regular lat-lon

Metadata

Metadata ID
82ba10ab-f2e4-40c0-91b8-f21454618134 XML
Taal
English
Karakterset
utf8
Hierarchisch niveau
dataset
Metadata datum
2025-12-09T13:03:22.56468Z
Metadata standaard naam.

ISO 19115

Metadata standaard versie

ISO 19115:2003 NL Kernset 1.3 KNMI 2.1.0

Metadata auteur
Organisatie Naam Contactpersoon Email Rol

Koninklijk Nederlands Meteorologisch Instituut (KNMI)

opendata@knmi.nl

contactpunt
Landinstelling
Taalcode Tekencodering
Nederlands; Vlaams
Engels utf8
 
 

Overviews

Ruimtelijke dekking

Trefwoorden



Provided by

Share on social sites





Privacy Cookies Copyright